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a b s t r a c t

The accurate establishment of oil similarity is a longstanding problem in petroleum geochemistry and
a necessary component for resolving the architecture of an oil reservoir. Past limitations have included
the excessive reliance on a relatively small number of biomarkers to characterize such complex fluids
as crude oils. Here we use multiway principal components analysis (MPCA) on large numbers of spe-
cific chemical components resolved with comprehensive two-dimensional gas chromatography-flame
ionization detection (GC × GC–FID) to determine the molecular relatedness of eight different maltene
fractions of crude oils. MPCA works such that every compound eluting within the same first and sec-
ond dimension retention time is quantitatively compared with what elutes at that same retention times
within the other maltene fractions. Each maltene fraction and corresponding MPCA analysis contains
upwards of 3500 quantified components. Reservoir analysis included crude oil sample pairs from around
the world that were collected sequentially at depth within a single well, collected from multiple depths
ultivariate
iomarker
ydrocarbons

in the same well, and from different depths and different wells but thought to be intersected by the same
permeable strata. Furthermore, three different regions of each GC × GC–FID chromatograms were anal-
ysed to evaluate the effectiveness of MPCA to resolve compositional changes related to the source of the
oil generating sediments and its exposure to biological and/or physical weathering processes. Compo-
sitional and instrumental artefacts introduced during sampling and processing were also quantitatively
evaluated. We demonstrate that MPCA can resolve multi-molecular differences between oil samples as
well as provide insight into the overall molecular relatedness between various crude oils.
. Introduction

The accurate establishment of oil similarity is a longstanding
roblem in petroleum geochemistry and in the determination of
eservoir architecture, which is perhaps the largest technical uncer-
ainty in oil. Crude oils within a subsurface reservoir can be probed

sing geochemical methods. However, difficulties ensue because
etroleum is a complex fluid that can comprise more than 10,000
ifferent compounds [1–5]. In addition, tracing petroleum accu-
ulations in the environment back to their origin is complicated
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due to physical (e.g. evaporation, emulsification, natural dispersion,
dissolution and sorption), chemical (photodegradation) and biolog-
ical (mainly microbial degradation) weathering processes [6]. It can
thus be difficult to establish relationships between oils that are dif-
ferentially weathered. Subsequently, the accurate measurement of
oil similarity is needed for the assessment of reservoir connectivity
[7], production allocation [8], and environmental forensics [9].

Although a vast array of methods can be used to compare fluid
composition one of the most simple and common approaches
depends on the comparison of integrated peak areas of two or
more chemical compounds detected by gas chromatography–mass

spectrometry (GC–MS) or flame ionization detection (GC–FID). This
typically involves the comparison of biomarker ratios to assess the
thermal history, depositional environment, and the type of organic
matter that characterizes the source rock of a given petroleum sam-
ple [8]. By comparing biomarker ratios, the fingerprints of various

dx.doi.org/10.1016/j.chroma.2011.03.004
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:Todd.Ventura@earth.ox.ac.uk
mailto:gtventura@yahoo.com
dx.doi.org/10.1016/j.chroma.2011.03.004


atogr.

o
s

t
p
f
F
F
d
s
s
T
p
t
a
p
t
s
m

(
t
a
b
e
p
o
o
f
c
s
w
d

a
c
[
c
t
w
a
e
s
m
g
t
m
T
m
s

w
e
d
t
a
b
t
o
d
M
o
e
o
a
e

G.T. Ventura et al. / J. Chrom

ils are generated and used to make inferences about compositional
imilarity between samples [8–12].

The limitation to this approach is that relatively few analytes are
ypically quantified in comparison to the number of compounds
resent in oil, and of these many are present in very low mass
raction and/or may be sensitive to specific types of overprinting.
or this reason a variety of ratios are compared with one another.
or example, the use of a variety of ratios may prevent a false
eclaration of two oils being dissimilar and therefore occupying
eparate compartments when these two oils are actually from the
ame compartment but have been biodegraded slightly differently.
he accuracy of this approach is limited with respect to what com-
ounds are chosen for analysis and how well the compound ratios
hat are compared accurately interpret the various chemical char-
cteristics and history of the petroleum. Furthermore, analytical
roblems arise because oils are at least three orders of magni-
ude more complex than what is resolvable by GC–MS [1–5]. As
uch, many oil modifying processes can go undetected due to these
yopic, comparative approaches.
Comprehensive two-dimensional gas chromatography

GC × GC) has vastly expanded peak resolving capacity rela-
ive to traditional gas chromatography [13–22]. However, the
ccurate integration of the larger number of GC × GC peaks has
een cumbersome, and new data reduction methods are still
volving. Currently, the vast majority of compounds in these com-
lex mixtures are still often ignored, and a tremendous amount
f chemical information is unrealized. One potential method for
vercoming this problem is to employ classification techniques
or the binning of GC × GC data (i.e. [23,24]). Classifications can be
onfigured to group analytes of similar compound classes across
pecific retention index ranges [24]. Such classification is difficult
ith traditional gas chromatography because compounds from
ifferent classes can have very similar retention times.

These simple data reduction methods are the focus of a larger
rray of statistical applications for chemical data referred to as
hemometrics [25]. The field of chemometrics began in the 1970s
26] and is defined as the development and use of mathemati-
al techniques to extract useful information out of data acquired
hrough chemical analysis [27–29]. One chemometric technique
idely used in petroleum geochemistry is principal components

nalysis (PCA). This unsupervised classification algorithm mod-
ls inherent variations by decomposing a data matrix (the data
et of many entire sample profiles) into its scores and loadings
atrices, which are based upon the eigenvectors that model the

reatest variance inherent in that data set [30]. Scores that clus-
er near to each other in principal component space are chemically

ore similar to each other than those with more distant scores.
hese geochemical data sets may comprise of quantified or nor-
alized peak integrations or ratios of specific analytes for various

amples.
More recently, multiway principal components analysis (MPCA)

ith GC × GC data has been demonstrated to hold promise as an
xploratory data analysis technique [31–35]. GC × GC data sets pro-
uced from flame-ionization detection (FID) can be regarded as
hree-way [36,37] in which the individual GC × GC chromatograms
re treated as objects (or samples) that describe a large num-
er of variables (or peaks within the chromatogram). When all of
he second-dimension chromatograms are stacked on top of each
ther, each data element is then indexed by first- and second-
imension retention axes, by sample number, and by FID response.
PCA enables the classification of these samples so that profiles
f compounds within the GC × GC chromatogram can be discov-
red, which differentiate groups of samples. This decomposition
f a multi-way array is developed as the product of a score vector
nd a loading array, where the score vectors have the same prop-
rties as those of ordinary two-way PCA [36]. As such, MPCA can be
A 1218 (2011) 2584–2592 2585

used to determine the molecular relatedness of complex chemical
mixtures.

This multivariate technique requires highly reproducible and
accurate retention time alignment for analytes in both GC dimen-
sions, which has been particularly difficult to achieve, and various
post-data processing methods have been developed to over-
come the problem [38]. For example, Fraga et al. [39] developed
an algorithm to align sub-regions of 2D separations along the
primary time axis by interpolating the data, calculating the sin-
gular value decomposition, and interactively shifting a sample
sub-region along a target chromatogram until a minimum per-
cent residual variance was obtained. This algorithm was later
adjusted to align both dimensions [40]. Alternative methods
include correlation-optimized shifting algorithms based on the
inner-product correlation for local subregions [41]; windowed rank
minimization alignment with interpolative stretching between
windows using set anchor points [42]; as well as affine transfor-
mations that match peak patterns between a peak template and
target peak pattern [43]. Other approaches include dynamic time
warping and correlation optimized warping (COW), which work
for a broad range of chromatograms [44–46]. However, it may be
possible to omit these transformations with modern GCs and strict
protocols for data acquisition.

In this study, we test the effectiveness of MPCA to distinguish
compositional similarities between various maltene fractions of
crude oils without the use of the above post-data processing tech-
niques. Six oil samples were analysed by GC × GC–FID (Table 1).
Two sample pairs were collected in situ by a Modular Formation
Dynamics Tester (MDTTM) tool [47–49]. The first pair, labelled F-
1 and F-2 was collected within the same well at the same depth
and should constitute the same crude oil. The F-1 sample was
injected three times to test the reproducibility of sample injec-
tion and data processing, which can yield statistical artefacts due
to poor data registration caused by variations in GC conditions and
matrix effects. The second pair, labelled PER-1 and PER-2, was col-
lected within two different wells at a depth that was intersected by
a potentially permeable sedimentary layer vertically offset by 658
feet. The chemical relatedness of these two sample pairs was pre-
viously assessed with different GC × GC fingerprinting techniques
by Ventura et al. [24] that utilized compound classes and retention
index ranges to group analytes for comparative analyses. Two addi-
tional crude oil samples were also analysed. One sample, labelled
sample B, was obtained from an unknown location close to the F-1
pair and is thus from the same oil field. The second sample, col-
lected from the North Slope, Prudhoe Bay, Alaska is analysed as an
outlier. Both samples pairs and sample B were contaminated with
varying amounts of olefin-based drilling fluids [20]. In this way, the
samples selected for MPCA analysis are designed to test injection
replication, differences stemming from sampling, and the ability
to determine compositional similarity between spatially distant
samples (Table 1).

Additionally, MPCA was performed on three sections of the
GC × GC–FID chromatograms (Fig. 1). These areas were chosen in
order to focus the analysis within discrete sections of the GC × GC
chromatogram where specific compound classes of petroleum
hydrocarbons elute. Region I represents the entire GC × GC–FID
chromatogram. However, the oils analysed here are dominated by
paraffins that are easily altered by many post-expulsion processes.
The molecular differences with respect to these compounds can
overload the statistical variance associated with the descending
order of magnitude of the eigenvalues for the correlation matrix.

Subsequently, the method validation also incorporated two sepa-
rate regions of the GC × GC–FID chromatogram for analysis. Region
II spans the chromatographic area of low to medium molecular
weight aromatic hydrocarbons. Region III covers an area where
sterane and hopane biomarkers elute. In this way, the comparison
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Table 1
Experimental design.

Sample name Sample location Sample extraction Experimental objective

F-1a-c Same depth, same well as F-2 DFA Injection replicate test
F-2 Same depth, same well as F-1 DFA Sampling replicate test
B Different depth, same well as F-1 and F-2 DFA Stratigraphic drill hole variability test
PER-1a Different depth, different well, same stratigraphic unit DFA Oil connectivity test
PER-2a Different depth, different well, same stratigraphic unit DFA Oil connectivity test
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Exxon, North Slope Prudhoe Bay, Alaska

a Samples labelled P-1 and P-2 in Ventura et al. [24].

f chromatograms regions were used to assess variations in actual
otal mass for each sample due to sample preparation, statistical
roblems potentially arising from retention time drifts and mis-
lignments, contamination, and source related differences between
he crude oils.

. Methods

.1. Oil sample acquisition

Four of the five samples were acquired from an open hole well
sing the MDTTM tool [47–49], which has a stout tube that presses
gainst the borehole wall to establish hydraulic communication
ith the permeable zone of interest. A rubber packer around the
robe creates a hydraulic seal against the mud cake formed by the
rilling mud, reducing the potential for contamination by borehole
uids. The MDTTM tool has a pump that draws down the fluid from
he formation into a sample bottle. The fluid can subsequently be
nalysed in the laboratory.

.2. Sample preparation
The four downhole samples were flashed to remove volatile
omponents (<n-C5 alkanes). The asphaltenes of each were
emoved by precipitation with n-heptane prior to GC analysis
nd the resulting maltene fractions were collected with vacuum

ig. 1. GC × GC–FID chromatogram of the North Slope sample. Red boxes indicate the tem
f the references to color in this figure legend, the reader is referred to the web version o
Surface sample Outlier

filtration by passing 40 ml heptane/g of oil through a 0.5 �m pre-
combusted Millipore GF/F fibreglass filter. Most of the n-heptane
was removed by rotary evaporation. The sample was then trans-
fered to a vial and further blown down under a continuous stream
of N2.

2.3. GC × GC–FID analysis

The GC × GC–FID system employed a dual stage cryogenic mod-
ulator (Leco, Saint Joseph, Michigan) installed in an Agilent 7890A
gas chromatograph configured with a 7683 series split/splitless
auto-injector and two capillary columns. Each sample was injected
in splitless mode and the purge vent was opened at 0.5 min. The
inlet temperature was 300 ◦C. The first-dimension column was a
nonpolar Restek Rtx-1 Crossbond (20 m × 0.25 mm i.d., 0.25 �m
film thickness) that was held at 60 ◦C for 12 min and then ramped
to 315 ◦C at 1.5 ◦C min−1. The thermal modulator cold jet gas was
dry N2, chilled with liquid N2. The thermal modulator hot jet air
was heated to 60 ◦C above the temperature of the main GC oven.
The hot jet was pulsed for 0.4 s every 10.0 s with a 5.6 s cooling
period between stages. Second-dimension separations were per-

formed with a 50% phenyl polysilphenylene-siloxane column (SGE
BPX50, 1 m × 0.10 mm i.d., 0.1 �m film thickness) that was held at
70 ◦C for 12 min and then ramped to 325 ◦C at 1.5 ◦C min−1. The
carrier gas was H2 at a constant flow rate of 1 ml min−1. The FID
detector signal was sampled at a rate of 200 data points s−1.

poral ranges for the three Regions (I, II, and III) used for MPCA. (For interpretation
f the article.)
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Fig. 2. Factor loading plots for PC-1, PC-2, PC-3, and PC-4 of Region I of the GC × GC chromatogram. Nor-Pr, Pr, and Ph are the acyclic isoprenoids, norpristane, pristane, and
p lkane
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hytane, respectively. Red, pink, yellow, and white lines indicate the elution of n-a
he references to color in this figure legend, the reader is referred to the web versio

.4. GC × GC–ToFMS analysis

The GC × GC time of flight mass spectrometry (-ToFMS) sys-
em employed a dual stage cryogenic modulator (Leco, Saint
oseph, Michigan) installed in an Agilent 6890 N gas chromato-
raph. Each extract was injected in splitless mode and the purge
ent was opened at 0.5 min. The inlet temperature was 300 ◦C. The
rst-dimension column was a nonpolar Restek Rtx-5 Crossbond
15 m × 0.18 mm i.d., 0.2 �m film thickness) that was held at 50 ◦C
or 5 min and then ramped to 300 ◦C at 3 ◦C min−1. Compounds elut-
ng from the first-dimension column were cryogenically modulated
n deactivated fused silica (0.5 m × 0.11 mm i.d.). The modulator
old jet gas was dry N2, chilled with liquid N2. The thermal mod-
lator hot jet air was heated to 60 ◦C above the temperature of
he main GC oven. The hot jet was pulsed for 1 s every 8 s with a
s cooling period between stages. Second-dimension separations
ere performed with a 50% phenyl polysilphenylene-siloxane col-
mn (SGE BPX50, 0.70 m × 0.10 mm i.d., 0.1 �m film thickness) that
as held at 70 ◦C for 5 min and then ramped to 320 ◦C at 3 ◦C min−1.

he carrier gas was He at a constant flow rate of 1.1 ml min−1. The
−1
oFMS detector signal was sampled at 50 spectra s . The transfer

ine from the second oven to the ToFMS was deactivated fused silica
0.5 m × 0.18 mm i.d.), which was held at a constant temperature
f 280 ◦C. The ToF source temperature was 230 ◦C and the detector
as set to 1575 V.
s, alkenes, alkadienes, and n-alkylcyclohexanes respectively. (For interpretation of
e article.)

2.5. GC × GC data processing

GC × GC–FID and GC × GC–ToFMS data acquisition were per-
formed using ChromaToF© software. Individual peaks were
automatically detected on the basis of a 50:1 signal to noise ratio.
Biomarkers were identified using GC × GC–ToFMS and then quan-
tified with GC × GC–FID. Specific compounds of various compound
classes were identified using standards from Aldrich, US National
Institute of Standards and Technology (NIST) and Chiron (Trond-
heim, Norway). Sample F-1 was divided into four aliquotes, which
were sequentially analysed by GC × GC–FID. These F-1 sample repli-
cates were treated as separate samples for the statistical analysis
(Table 1). GC × GC–FID data files were exported as csv (comma sep-
arated variable) files and loaded into Noesys Transform version 2.4.
Data files were baseline subtracted and normalized to the peak inte-
gration area of the recalcitrant 17�(H), 21�(H)-hopane biomarker.
Three different sections of the chromatographic area were isolated
from the data matrix (Fig. 1) and exported as csv files into MatlabTM.
MPCA was performed using the MatlabTM PLS Toolbox 5.5 from
Eigenvector Research Incorporated. The data was mean-centered,

which translates the axes of the coordinate system to the center of
gravity, or centroid, of the data [37].

MPCA is an unfold method in that the two-way data for each
sample is unfolded row-wise and PCA is performed on the unfolded
data. Two-way loadings presented herein are refolded from the
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oadings that are computed by the analysis on the unfolded data.
PCA models were validated through removal of outliers and

ppropriate selection of principle components (PCs). Outliers sam-
les, such as the North Slope, Prudhoe Bay crude oil that produced
esiduals placing it outside a 95% confidence interval were removed
rom analysis with respect to the model and the model was then
e-fit after the exclusion. PCs were included until they did not
ncrease the variance captured by more than 1%. For each analysis,
he optimal number of PCs was determined by the percent variance
ncoded in each PC. Never more than four PC were used for any
nterpretative measurement. However, several MPCA calculated
Cs having low variance were associated with factor loadings or
cores plots containing geochemically interpretative data. In these
ases the low variance was assumed to be focused on the chemically
eaningful data and the results were included.

. Results and discussion

Two attempts were made at analysing the oil samples. In both
ases the samples were randomized and then injected in a sin-
le sequence to reduce systematic, temporal variations in the
etention time offset of analytes. The initial sample sequence was
nalysed with a Leco Pegasus III GC × GC–ToFMS system, which
ses an Agilent 6890N gas chromatograph. However, the exported
otal ion current (TIC) chromatograms had retention time offsets
hat progressively became more severe. A second attempt with
C × GC–FID data using an Agilent 7890A gas chromatograph was
ore successful. The improved electronic pneumatics controls,

igital electronics, and faster oven cool-down of this gas chromato-
raph greatly improved the precision in data registration of the
ample sequence.

MPCA generates factor loadings and scores plots. Factor load-
ngs are the calculated variances associated with each variable in

sample set for a given principal component. When applied to
C × GC data, the x- and y-axis of a factor loading plot is the same
s the first and second dimension of a GC × GC chromatogram. The
-axis indicates the positions in the data contributing to the vari-
nce between analytes. The z-axis thus allows for peak assignment
f variance. Peaks with yellow to red colors have positive loadings.
lue peaks have negative loadings. Scores plots display the projec-
ion of the data onto these loadings, and similarities in these scores
roup similar samples. As such, scores plots can be used to assess
he statistical similarity of various GC × GC amenable complex mix-
ures (i.e. petroleum samples). Taken together, the two plots not
nly enable a similarity estimation for comparing different com-
lex chemical mixtures, but also provide the ability to determine
hich compounds vary and how such compounds vary between

arious chemical mixtures. This information in turn can be used to
nterpret the chemical meaning of differences in samples [50].

.1. Region I – the entire GC × GC–FID chromatogram

The Region I data set contained 8 × ∼3500 (objects or sam-
les × variables or peaks). Dominant factor loadings within Region
on PC-1, the first principle component, are observed for the low to
iddle molecular weight range (n-C13 to n-C22) of n-alkanes (Fig. 2).

referentially high loadings are observed for n-C14, n-C16, n-C18, n-
19, n-C21, n-C23, and n-C24. The lack of a systematic order (i.e. even
ver odd or odd over even) to this homologous series indicates the
igh factor loadings are not due to some samples having a car-

on numbered preference, but instead the function of differences

n the source, preservation and weathering of the oils. To a lesser
xtent, positive loadings are also observed for branched alkanes,
lkenes, the acyclic isoprenoids nor-pristane, pristane, and phy-
ane, as well as for the homologous series of n-alkylcyclohexanes.
. A 1218 (2011) 2584–2592

The presence of alkene isomers ranging from C15 to C19 had been
previously documented Reddy et al. [20] as being contaminants
derived from drilling fluids dissolved within an oil sample during
extraction with the MDTTM tool. All but the North Slope, Prudhoe
Bay, Alaska sample contains some level of these contaminants [24]
and their high factor loadings within PC-1 was expected. Dominant
loadings on PC-2 include C13–C24 n-alkanes and C15–C18 alkadi-
enes. PC-3 has positive loadings for n-alkanes spanning C13–C20 and
negative loadings for C16 and C18 alkadienes. PC-4 produces high
loadings for C16 and C18 alkenes of sample PER-1. However, this PC
also includes a broad range of low molecular weight branched and
cyclic paraffins that derive from the North Slope oil sample. Nega-
tive PC-4 loadings are present for lower molecular weight n-alkanes
from n-C16 to n-C23 on the PER-1 sample. Reasons for different
components appear in the same PC is subject of future work.

The PC-1, PC-2, PC-3, and PC-4 factor loading plots of Region I
suggest that the fundamental chemical differences between the oil
samples was not only differences in paraffin distributions, but also
the degree of contamination received from drilling fluids (Fig. 2).
This is significant because alkene peaks are difficult to quantita-
tively separate from crude oil peaks in standard GC analysis and
the quantitative removal of these contaminants is not possible with
GC–FID or GC–MS due to the co-elution with n-alkanes, as well as
the similar occurrence of many fragment ions [20]. The presence
of alkadienes with similar carbon number ranges as the alkenes
indicates that these compounds are also likely component of the
drilling fluids, which had escaped detection in prior investigations
[20,24].

Oil samples with scores clustering near to one another in prin-
cipal component space are chemically similar. Within Region I
72.03%, 17.55%, 6.76%, and 2.79% of molecular variance between the
oil samples is associated with PC-1, PC-2, PC-3, and PC-4, respec-
tively (Fig. 3). The F-1 and F-2 sample pair and injection replicates
cluster close to one another with high positive scores on PC-1 and
low negative scores on PC-2, PC-3, and PC-4. The close association
of these samples indicates these oils have similar distributions of
n-alkanes, acyclic isoprenoids, and unsaturated alkanes and poten-
tially also similar distributions for all other compounds. Sample B
has similar scores as the F-1 and F-2 sample pair for PC-1, PC-2,
and PC-4 and higher positive score for PC-3. The PER-1 and PER-
2 sample pair contain very different scores for PC-1 and PC-2 and
similar scores for PC-3 and PC-4. All MDT samples contain high rela-
tive abundances of alkenes. However, these compounds constitute
over 10% and 8% of the mass of resolvable paraffins for the PER-1
and PER-2 sample pair [24]. The differences in the high concentra-
tions of unsaturated alkanes may be reflected in the different PC
scores. The North Slope sample outlier is separated from all of the
other samples.

3.2. Region II – aromatic compounds

The Region II data set contained 8 × ∼1000 (objects or sam-
ples × variables or peaks). Within Region II the dominant loadings
on PC-1 are obtained from compound classes alkylbenzenes,
naphthalenes, benzothiophenes, fluorenes, phenanthrenes, and
dibenzothiophenes (Fig. 4). Linear and substituted alkylbenzenes
display progressively higher PC-1 factor loadings with increas-
ing carbon number of the alkyl chain. Specific analytes with
high PC-1 factor loadings are also observed for monomethyl-
to tetramethyl-substituted naphthalenes and monomethyl- to
trimethyl-substituted phenanthrenes. PC-2 contains dominant

loadings for monomethyl and dimethyl-substituted naphthalenes
as well as for monomethyl and dimethyl-substituted ben-
zothiophenes. PC-3 contains highfactor loadings for linear and
substituted alkylbenzenes, monomethyl-naphthalenes, two iso-
mers of dimethylnaphtalenes, and three isomers of trimethyl-
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Fig. 4. Region II factor loading plots for PC-1, PC-2, and PC-3 representing the elution
ig. 3. Scores plots for PC-1, PC-2, PC-3, and PC-4 of the Region I of the GC × GC
hromatogram.

aphthalenes. PC-3 also contains negative loadings for several
inear alkylbenzenes, as well as monomethyl- and dimethyl-
ubstituted benzothiophene isomers.

The scores plot of Region II indicates 94.74%, 2.64%, and 1.45%
f variance is associated with PC-1, PC-2, and PC-3, respectively
Fig. 5). As with Region I, the F-1 and F-2 sample pair and injec-
ion replicated cluster close to one another with high positive PC-1
cores. However for Region II these samples have near zero scores
or PCs 2 and 3. Sample B contains similarly high positive PC-1
cores and near zero scores for PC-2, but has more negative scores
n PC-2. For Region II, the PER-1 and PER-2 sample pair is sepa-
ated from all of the other samples and clusters closely together
ith positive low PC-1 and PC-3 scores and negative scores on PC-

. The North Slope outlier sample is clearly separated from all of the
DT samples with positive low scores on PC-1 and positive high

cores on PC-3 (Fig. 5).
Although Region II contains compounds that are prone to bio-

hemical and physical weathering processes, the compounds are
ot as volatile and prone to loss or contamination by sample extrac-
ion and preparation or biodegradaton when compared with the
nalysis of Region I. MPCA of Region II therefore provides a more

ccurate picture of the compositional similarity of the various oil
amples. The MPCA results of Region II indicate systematic differ-
nces exist between the general abundance of different compound
lasses as well as differences in specific isomers within a compound
lass for the various oil samples. The associated scores plot indicates
of low to medium molecular weight aromatic compounds. C1N–C4N compound
series refer to monomethyl- to tetramethyl substituted naphthalenes. C2BT and
C3BT are di- and trimethyl substituted benzothiophenes.

the oil samples with more similar geographic locations also have a
greater degree of molecular similarity.

3.3. Region III – Sterane and hopane biomarkers
The Region III data set contained 8 × ∼150 (objects or sam-
ples × variables or peaks). Problems with data registration was
more significant for the Region III MPCA. Second dimension reten-
tion time offsets were identified by the systematic production
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Fig. 5. Scores plot for PC-1, PC-2, and PC-3 of the Region II of the GC × GC chro-
matogram.

Fig. 6. Factor loading plots for PC-1 and PC-2 of Region III of the GC × GC chromatogram r
tetracyclic terpane, Ts, Tm, BNH, NH, 29 M, and H are C27 17�-22,29,30-Trisnorhopane,
and hopane, respectively. 22S and R homohopane isomers are labelled C31–C35. G denote
. A 1218 (2011) 2584–2592

of peak shadows with low or high factor loading for each of
the measured analytes (Fig. 6). Misalignments were most promi-
nent for the suite of hopane biomarkers. However, even with
these offsets various compositional differences are identifiable.
Within the biomarker elution area, high positive factor loadings
on PC-1 were observed for the C27 13�(H),17�(H)-diacholestane
20S and R and the C29 24-ethyl-13�(H),17�(H)-diacholestane
20S and R and the C27 5�(H),14�(H),17�(H)-cholestane 20R, C24
tetracyclic terpenoid (TT), C29 17�(H),21�(H)-norhopane and C30
17�(H),21�(H)-hopane (H). No variation from PC-1 to PC-2 was
observed for the hopanes. However, relatively higher positive
factor loadings are observed for the steranes C27 13�(H),17�(H)-
diasterane 20S and R and C27 5�(H),14�(H),17�(H)-cholestane
20R. Additionally, high positive factor loadings were also observed
for the C28 28,30 bisnorhopane (BNH), which was influenced by the
high abundance of this compound in the North Slope oil sample.
The scores plots of Region III indicate 98.14% and 0.83% of
variance is associated with PC-1 and PC-2, respectively (Fig. 7).
Although the MPCA of Region III is affected by poorer data regis-
tration, the scores plot for this region produces clusters that relate

epresenting the elution region of sterane and hopane biomarkers. C24 TT is the C24

C27 18�-22,29,30-Trisnorhopane, C28 bisnorhopane, norhopane, C29 normoretane,
s gammacerane. Reg Ster and Diaster are regular and diasteranes.
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ig. 7. Scores plot for PC-1 and PC-2 of the Region III of the GC × GC chromatogram.

o the expected genetic similarities of each oil sample. For exam-
le, all of the F-1 replicates and the F-2 sample cluster together.
ample B, which was collected from an unknown location in the
ame oil field, also groups with the F-1 and F-2 sample pairs and
eplicates, suggesting these oils formed from the same source rock.
he same situation is observed for the PER-1 and PER-2 sam-
le pair. All of the sample pairs are clearly separated from one
nother as well as from the North Slope outlier sample. Such clearly
elineated groupings with the reduced data registration could
ot be a random result suggesting the MPCA techniques was still
ffective.

.4. Comparison with other oil fingerprinting methods

Different MPCA results are observed based on which region of
he GC × GC chromatogram that was analysed. Region I effectively
emonstrated that subtle compositional differences of paraffins
nd drilling fluid contaminants could be detected by using MPCA.
owever, the potential to discriminate genetic similarities between

ample B, F-1, and F-2 and between the PER-1 and PER-2 sam-
le pairs was not possible because of the variable contributions of
lkenes. This contrasts with a parallel analysis performed by using
iomarker ratios and classification schemes that compared, specific
ompound class contributions, as well as the hypothesis testing of
otential differences between compound classes across 1st dimen-
ion retention index ranges [24]. For that study, it was possible to
ither ignore the presence of drilling fluid contaminants or com-
letely quantitatively remove their influence. The PER-1 and PER-2
amples were demonstrated to have nearly identical biomarker
atios and concentrations of many compound classes such as paraf-
ns. However, this limitation observed with the Region I MPCA
nalysis was largely overcome without the additional use of reten-
ion time alignment algorithms by analysing other regions of the
hromatogram and in this regard the sensitivity of the analysis
as likely improved. For example, the close clustering of the MPCA

cores plot of Region III (Fig. 7) is in contrast to the similarity cal-
ulated for the same compound classes in Ventura et al. [24].

.5. Interpretative value

As noted by Mispelaar et al. [51] multivariate-analysis (MVA)

echniques cannot distinguish between informative variables such
s GC × GC peaks describing differences between samples and

uninformative variables’, which are peaks that do not describe
elevant differences. In the event that these can be distinguished,
ariations between individual compounds or compound classes
A 1218 (2011) 2584–2592 2591

can be interpreted as representing source specific differences from
the oil reservoir. For example, the identification of elevated factor
loadings of methyldibenzothiophene isomers may be useful in that
differences in these compounds have been linked to oils derived
from carbonate versus siliciclastic source rocks [52]. In this respect
MPCA can be used to generate inferences about the origin of the
oils. Additionally, the chromatographic regions chosen for analy-
sis can limit the type of phenomenon examined. In this respect, oil
modifying processes such as water-washing and biodegradation,
which are more prominent from Regions I and II can be separated
from factors that causing different source rock specific biomarker
compositions of Region III.

However, ultimately one would like to know with what cer-
tainty various oils are the same or different. In other words, one
could ascertain the probability that two or more oil samples are
related and therefore come from the same compartment. Such
hypothesis testing is possible with PCA and subsequently also
MPCA. To facilitate this form of decision making, a greatly increased
number of samples is required to define a distribution of a particu-
lar class. For this particular study, a class is a specific sample source
or location that would then be sampled multiple times to deter-
mine its chemical variability. Afterwards a t-test can be performed
to determine if the distributions are different.

4. Conclusion

Within this experiment we demonstrate that MPCA can be
used to effectively resolve the molecular differences between very
similar oil samples as well as be used to group crude oils based
on the degree of their molecular similarity. Compositional and
instrumental artefacts introduced during sampling and analyti-
cal processing were quantitatively evaluated. Contaminants such
as alkenes and alkadienes introduced during sampling were eas-
ily identified within factor loading plots and their high relative
abundance did not impede the determination of the primary com-
positional relatedness of the oil samples. These constituents can
impede the determination of the primary composition and relat-
edness of the oil samples that were not contaminated if the degree
to which these contaminants occur is large. In such cases other
chromatographic areas should be analysed and integrated into the
process of model validation. Unique molecular differences between
the various samples were also readily identified.

High-resolution techniques such as GC × GC are necessary to
elucidate minute differences in oil composition. However, the large
data sets that are associated with these types of analysis require
other novel processing approaches. The data mining power of MPCA
enables the simultaneous comparison of thousands of GC amenable
compounds as well as a simple and effective method to differentiate
minor chemical differences between oils that cannot be achieved
with GC–MS. This method expands upon current statistical applica-
tions relying on the comparison of a few common analytes, such as
biomarker ratios, to establish the chemical similarity of oil. MPCA
with GC × GC data should be capable of dissevering petrochemical
changes associated with such processes as reservoir connectivity
and the physical or biological oil weathering processes. MPCA can
be used to screen a vast array of fluid contaminants and be used
to discriminate between source dependent and weathering related
processes that uniquely impact the molecular composition of crude
oils.
Acknowledgements

The above represents only the opinions of the author and do not
represent the position of the U.S. Coast Guard or the United States
of America. This study was supported by the U.S. National Science



2 atogr

F
0

R

[
[

[
[

[

[

[
[

[

[

[

[

[

[

[

[

[
[
[

[

[
[

[

[
[

[

[
[

[
[
[
[

[
[

[
[
[

[

[

[

[50] R.B. Gaines, G.J. Hall, G.S. Frysinger, W.R. Gronlund, K.L. Juaire, Environ. Foren-
sics 7 (2006) 77.
592 G.T. Ventura et al. / J. Chrom

oundation (IIS-0430835), U.S. Department of Energy (DE-FG02-
6ER15775) and The Seaver Institute.

eferences

[1] B.T. Brooks, C.E. Bood, S.S. Kurtz Jr., L. Schmerling, The Chemistry of Petroleum
Hydrocarbons, vol. 1, Reinhold Publishing, New York, 1957.

[2] B.P. Tissot, D.H. Welte, Petroleum Formation and Occurrence, Springer-verlag,
Berlin, 1984.

[3] A.G. Marshall, C.L. Hendrickson, G.S. Jackson, Mass Spectrom. Rev. 17 (1998) 1.
[4] C.A. Hughey, R.P. Rogders, A.G. Marshall, Anal. Chem. 74 (2002) 4145.
[5] O.C. Mullins, R.P. Rodgers, P. Weinheber, G.C. Klein, L. Venkataramanan, A.

Ballard, A.G. Marshal, Energy Fuels 20 (2006) 2448.
[6] G. Thouand, P. Bauda, J. Oudot, G. Kirsch, C. Sutton, J.F. Vidalie, Can. J. Microbiol.

45 (1999) 106.
[7] A.E. Pomerantz, G.T. Ventura, A.M. McKenna, J.A. Cañas, R.K. Nelson, C.M. Reddy,
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